منابع مشابه
Relational state transition dynamics
Basic concepts of classical dynamics are analysed in the simple mathematical setting of state transition systems, where both time and space are discrete, and no structure is assumed on the state space besides a binary transition relation. This framework proves useful to the dynamical analysis of computations and biomolecular processes. Here a relational formulation of this framework is presente...
متن کاملFemtosecond Transition-state Dynamics
Since the early days of the transition-state theory of Eyring, Evans and Polanyi,' the fleeting nature of the state as the reaction proceeds from reagents to products has been known. The lifetime of the state is typically s, and hence to observe these transition states in real time the temporal resolution must be on the femtosecond scale. Progress has been made in probing transition states of e...
متن کاملEnzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes.
Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination...
متن کاملState Transition Dynamics: Basic Concepts and Molecular Computing Perspectives
Classical dynamics concepts are analysed in the basic mathematical setting of state transition systems where time and space are both completely discrete and no structure is assumed on the state’s space. Interesting relationships between attractors and recurrence are identified and some features of chaos are expressed in simple, set theoretic terms. String dynamics is proposed as a unifying conc...
متن کاملCharacterization of the transition state of functional enzyme dynamics.
Through characterization of the solvent isotope effect on protein dynamics, we have examined determinants of the rate limitation to enzyme catalysis. A global conformational change in Ribonuclease A limits the overall rate of catalytic turnover. Here we show that this motion is sensitive to solvent deuterium content; the isotope effect is 2.2, a value equivalent to the isotope effect on the cat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Logic and Algebraic Programming
سال: 2008
ISSN: 1567-8326
DOI: 10.1016/j.jlap.2007.07.003